

FOR VTOX+2, IIT-JEE/NEET

Class:- IX <u>Topic :- Polynomials</u>

Subject:- Mathematics

DIRECTOR:- RAKESH KUMAR

BHAGWAT NAGAR Behind SBI/ICICI BANK ATM, KUMHRAR, PATNA- 26 MOBILE NO. :- 9973025048; 7903956320 Website: www.successpointpatna.co.in

Worksheet-1

1.	In $2 + x + x^2$	the coefficient of	of x^2 is:		
	(a) 2	(b) 1	(c) – 2	(d) –1	
2.	In $2 - x^2 + x^3$	the coefficient	of x^2 is:		
2.	(a) 2	(b) 1	(c) - 2	(d) –1	
3.	$\ln \frac{\pi x^2}{2} + x + 1$	10, the coefficie	ent of x^2 is:		
	(a) $\frac{\pi}{2}$	(b) 1	$(c)-\frac{\pi}{2}$	(d) –1	
	L		2		
4.	The degree of	f <mark>5t –</mark> 7 is:			
	1. 0	(b) 1	(c) 2	(d) 3	
5.	The degree of	$f 4 - v^2$ is:			
2.	(a) 0	(b) 1	(c) 2	(d) 3	
6.	The degree of $(a) 0$	(b) 1	(c) 2	(d) 3	
	(<i>a</i>) 0	(0) 1	(0) 2	(u) 5	
7.	The value of p	$\mathbf{p}(\mathbf{x}) = 5\mathbf{x} - 4\mathbf{x}^2$	+3 for $x = 0$ is	:	
	(a) 3	(b) 2	(c) - 3	(d) - 2	
8.	The value of t	$p(\mathbf{x}) = 5\mathbf{x} - 4\mathbf{x}^2$	+ 3 for x = $- 1$	is:	
	(a) 6	(b) –6	(c) 3	(d) – 3	
0	There 1		· 1) 6- (1) *		
9.	The value of $[(a), 1]$	p(x) = (x - 1)(x - 1)	(c) 2	(d) = 2	
	(u) I		(0) 2	(u) = 2	
10.	The value of p	$\mathbf{p}(\mathbf{t}) = 2 + \mathbf{t} + 2\mathbf{t}$	$t^2 - t^3$ for p(0) i	s:	
	(a) 1	(b) 2	(c) – 1	(d) 3	
11.	The value of r	p(t) = 2 + t + 2t	$t^{2} - t^{3}$ for p(2) i	ç.	
	(a) 4	(b) -4 (b) -4	(c) 6	(d) 7	
10			6 (6) 1		
12.	The value of μ	$p(y) = y^2 - y + 1$	tor $p(0)$ is:	(d) 1	
	(a) - 1	(0) 5	(c) -2	(u) I	

MCQ WORKSHEET-ii

1.	The zero of point $(a) \frac{7}{2}$	(x) = $2x - 7$ is: (b) $\frac{2}{7}$	(c) $\frac{-2}{7}$	(d) $\frac{-7}{2}$		
2.	The zero of point $(a) \frac{4}{9}$	(x) = 9x + 4 is: (b) $\frac{9}{4}$	(c) $\frac{-4}{9}$	(d) $\frac{-9}{4}$		
3.	Which are the (a) $1, -1$	zeroes of $p(x)$ (b) $-1, 2$	$= x^{2} - 1$: (c) -2, 2	(d) -3, 3		
4.	Which are the (a) $1, -2$	zeroes of $p(x)$ (b) -1 , 2	= (x - 1)(x - 2) (c) 1, 2	:: (d) −1, −2		
5.	Which one of (a) $\frac{m}{l}$	the following is (b) $\frac{l}{m}$	s the zero of p(x (c) $-\frac{m}{l}$	$ x) = lx + m (d) - \frac{l}{m} $		
6.	Which one of (a) $-\frac{4}{5}\pi$	the following is (b) $\frac{1}{5}\pi$	s the zero of p(x (c) $\frac{4}{5}\pi$	(d) none of these		
7.	On dividing x ² (a) 1	$x^{3} + 3x^{2} + 3x + 1$ (b) 0	by x we get represent the formula $(c) - 1$	mainder: (d) 2		
8.	On dividing $x^3 + 3x^2 + 3x + 1$ by $x + \pi$ we get remainder: (a) $-\pi^3 + 3\pi^2 - 3\pi + 1$ (b) $\pi^3 - 3\pi^2 + 3\pi + 1$ (c) $-\pi^3 - 3\pi^2 - 3\pi - 1$ (d) $-\pi^3 + 3\pi^2 - 3\pi - 1$					
9.	On dividing x^{3} (a) $\frac{8}{27}$	$x^{3} + 3x^{2} + 3x + 1$ (b) $\frac{27}{8}$	by $5 + 2x$ we get $(c) - \frac{27}{8}$	et remainder: (d) $-\frac{8}{27}$		
10.	If x – 2 is a fa (a) 1	$\begin{array}{l} \text{ctor of } x^3 - 3x \\ \text{(b)} -1 \end{array}$	+5a then the va (c) $\frac{2}{5}$	lue of a is: (d) $\frac{-2}{5}$		

MCQ WORKSHEET-III

1.	(x + 8)(x - 10) in the expand (a) $x^2 - 8x - 80$ (b) x^2	led form is: $-2x - 80$	(c) $x^2 + 2x + 80$	(d) $x^2 - 2x + 80$	
2.	The value of 95 x 96 is: (a) 9020 (b) 9120	(c) 9320	(d) 9340		
3.	The value of 104 x 96 is: (a) 9984 (b) 9624	(c) 9980	(d) 9986		
4.	Without actual calculating th (a) 16380 (b) -16380	e cubes the val (c) 15380	ue of $28^3 + (-15)^3 + (-(d) - 15380)$	$(13)^3$ is:	
5.	If x - 2 is a factor of $x^3 - 2ax^3$ (a) $\frac{7}{6}$ (b) $\frac{-7}{6}$	$x^{2} + ax - 1$ then (c) $\frac{6}{7}$	the value of a is: (d) $\frac{-6}{7}$		
6.	If x + 2 is a factor of $x^3 + 2ax$ (a) $\frac{2}{3}$ (b) $\frac{3}{5}$	$x^{2} + ax - 1$ then (c) $\frac{3}{2}$	the value of a is: (d) $\frac{1}{2}$		
7.	If $x + y + z = 0$ then $x^3 + y^3 - (a) 3xyz$ (b) $- 3xyz$	+ z ³ is equal to (c) xy	(d) –2xy		
8.	The factors of $2x^2 - 7x + 3a$ (a) $(x - 3)(2x - 1)$ (c) $(x - 3)(2x + 1)$	re: (b) $(x + 3)(2x)$ (d) $(x + 3)(2x)$	x + 1) x - 1)		
9.	The factors of $6x^2 + 5x - 6$ are: (a) $(2x - 3)(3x - 2)$ (b) $(2x - 3)(3x + 2)$ (c) $(2x + 3)(3x - 2)$ (d) $(2x + 3)(3x + 2)$				
10.	The factors of $3x^2 - x - 4$ are (a) $(3x - 4)(x - 1)$ (c) $(3x + 4)(x - 1)$	e: (b) $(3x - 4)(x)$ (d) $(3x + 4)(x)$	(+ 1) (+ 1)		
11.	The factors of $12x^2 - 7x + 1$ (a) $(4x - 1)(3x - 1)$ (c) $(4x + 1)(3x - 1)$	are: (b) $(4x - 1)(3)$ (d) $(4x + 1)(3)$	(x + 1) (3x + 1)		
12.	The factors of $x^3 - 2x^2 - x +$ (a) $(x - 1)(x - 1)(x - 5)$ (c) $(x + 1)(x - 1)(x + 5)$	2 are: (b) $(x + 1)(x + 1)(x$	(x + 1)(x + 5) + 1)(x - 5)		

MCQ WORKSHEET-IV

1.	Which of the following is not a polynomial? (a) $x^2 + \sqrt{2}x + 3$ (b) $x^2 + \sqrt{2}x + 6$ (c) $x^3 + 3x^2 - 3$ (d) $6x + 4$					
2.	The degree of the (a) –4	e polynomial 3x (b) 4	$x^{3} - x^{4} + 5x + 3$ is (c) 1	(d) 3		
3.	Zero of the polyn (a) $x = 0$	nomial $p(x) = a^2$ (b) $x = 1$	x, $a \neq 0$ is (c) $x = -1$	(d) a = 0		
4.	Which of the follo	owing is a term	of a polynomial?			
	(a) 2x	(b) $\frac{3}{x}$	(c) $x^{\sqrt{x}}$	(d) \sqrt{x}		
5.	If $p(x) = 5x^2 - 3x^2$ (a) -10	x + 7, then $p(1)$ (b) 9	equals (c) –9	(d) 10		
6.	6. Factorisation of $x^3 + 1$ is (a) $(x + 1)(x^2 - x + 1)$ (b) $(x + 1)(x^2 + x + 1)$ (c) $(x + 1)(x^2 - x - 1)$ (d) $(x + 1)(x^2 + 1)$					
7.	If $x + y + 2 = 0$, t (a) $(x + y + 2)$	then $x^3 + y^3 + 8$ $)^3$ (b) 0	equals (c) 6xy	(d) –6xy		
8.	If $x = 2$ is a zero (a) -4	of the polynomi (b) 0	ial $2x^2 + 3x - p$, then th (c) 8	ne value of p is (d) 14		
9.	$x + \frac{1}{x}$ is					
 (a) a polynomial of degree 1 (b) a polynomial of degree 2 (c) a polynomial of degree 3 (d) not a polynomial 						
10. Integral zeroes of the polynomial $(x + 3)(x - 7)$ are (a) -3 , -7 (b) 3 , 7 (c) -3 , 7 (d) 3 , -7						
11. The remainder when $p(x) = 2x^2 - x - 6$ is divided by $(x - 2)$ is (a) $p(-2)$ (b) $p(2)$ (c) $p(3)$ (d) $p(-3)$						
12. If $2(a^2+b^2)=(a+b)^2$, then						
	(a) $a + b = 0$	(b) a = b	(c) $2a = b$	(d) ab = 0		
13. If $x^3 + 3x^2 + 3x + 1$ is divided by $(x + 1)$, then the remainder is						
	(a) –8	(b) 0	(c) 8	(d) $\frac{1}{8}$		
14	The value of (525 (a) 100	$(5)^2 - (475)^2$ is (b) 1000	(c) 100000	o (d) -100		

15. If $a + b = -1$, th (a) -1	nen the value of (b) 1	$a^{3} + b^{3} - 3ab$ is (c) 26	(d) –26			
16. The value of $(2-a)^3 + (2-b)^3 + (2-c)^3 - 3(2-a)(2-b)(2-c)$ when $a + b + c = 6$ is						
(a) –3	(b) 3	(c) 0	(d) –1			
17. If $\frac{a}{b} + \frac{b}{a} = 1$, (a)	17. If $\frac{a}{b} + \frac{b}{a} = 1$, $(a \neq 0, b \neq 0)$, then the value of $a^3 - b^3$ is					
(a) –1	(b) 0	(c) 1	(d) $\frac{1}{2}$			
18. If $x = \frac{1}{2 - \sqrt{3}}$,	then the value of	f $(x^2 - 4x + 1)$ is				
(a) –1	(b) 0	(c) 1	(d) 3			
19. The number of	zeroes of the po	lynomial $x^3 + x - 3 - 3$	x^2 is			
(a) 1	(b) 2	(c) 0	(d) 3			
20. If $(x + 2)$ and $(x + 2) = -7$	(x - 2) are factors (b) 7	s of $ax^4 + 2x - 3x^2 + bx$	x - 4, then the value of $a + b$ is $(d) - 8$			
(a) -7		(c) 14	$(\mathbf{u}) = 0$			

PRACTICE QUESTIONS

- 1. Factorize the following: $9x^2 + 6x + 1 25y^2$.
- **2.** Factorize the following: $a^2 + b^2 + 2ab + 2bc + 2ca$
- 3. Show that $p(x) = x^3 3x^2 + 2x 6$ has only one real zero.
- 4. Find the value of a if x + 6 is a factor of $x^3 + 3x^2 + 4x + a$.
- 5. If polynomials $ax^3 + 3x^2 3$ and $2x^3 5x + a$ leaves the same remainder when each is divided by x 4, find the value of a...
- 6. The polynomial $f(x) = x^4 2x^3 + 3x^2 ax + b$ when divided by (x 1) and (x + 1) leaves the remainders 5 and 19 respectively. Find the values of a and b. Hence, find the remainder when f(x) is divided by (x 2).
- 7. If the polynomials $2x^3 + ax^2 + 3x 5$ and $x^3 + x^2 2x + a$ leave the same remainder when divided by (x 2), find the value of a. Also, find the remainder in each case.
- 8. If the polynomials $az^3 + 4z^2 + 3z 4$ and $z^3 4z + a$ leave the same remainder when divided by z 3, find the value of a.
- 9. The polynomial $p(x) = x^4 2x^3 + 3x^2 ax + 3a 7$ when divided by x + 1 leaves the remainder 19. Find the values of *a*. Also find the remainder when p(x) is divided by x + 2.
- 10. If both x 2 and $x \frac{1}{2}$ are factors of $px^2 + 5x + r$, show that p = r.
- 11. Without actual division, prove that $2x^4 5x^3 + 2x^2 x + 2$ is divisible by $x^2 3x + 2$.
- **12.** Simplify $(2x 5y)^3 (2x + 5y)^3$.
- **13.** Multiply $x^2 + 4y^2 + z^2 + 2xy + xz 2yz$ by (-z + x 2y).
- 14. If a, b, c are all non-zero and a + b + c = 0, prove that $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3$
- **15.** If a + b + c = 5 and ab + bc + ca = 10, then prove that $a^3 + b^3 + c^3 3abc = -25$.
- 16. Without actual division, prove that $2x^4 6x^3 + 3x^2 + 3x 2$ is exactly divisible by $x^2 3x + 2$.
- 17. Without actual division, prove that $x^3 3x^2 13x + 15$ is exactly divisible by $x^2 + 2x 3$.
- 18. Find the values of a and b so that the polynomial $x^3 10x^2 + ax + b$ is exactly divisible by (x 1) as well as (x 2).
- **19.** Find the integral zeroes of the polynomial $2x^3 + 5x^2 5x 2$.
- **20.** If (x 3) and $\left(x \frac{1}{3}\right)$ are both factors of $ax^2 + 5x + b$, then show that a = b.
- **21.** Find the values of a and b so that the polynomial $x^4 + ax^3 7x^2 + 8x + b$ is exactly divisible by (x + 2) as well as (x + 3).

- **22.** If $x^3 + ax^2 + bx + 6$ has (x 2) as a factor and leaves a remainder 3 when divided by (x 3), find the values of a and b.
- **23.** Find the value of $x^3 + y^3 + 15xy 125$ if x + y = 5.
- **24.** Without actually calculating, find the value of $(25)^3 (75)^3 + (50)^3$.
- **25.** Factorise each of the following cubic expressions:

(i)
$$8x^{3} - y^{3} - 12x^{2}y + 6xy^{2}$$

(ii) $27q^{3} - 125p^{3} - 135q^{2}p + 225qp^{2}$
(iii) $8x^{3} + 729 + 108x^{2} + 486x$
(iv) $27x^{3} - \frac{1}{216} - \frac{9}{2}x^{2} + \frac{1}{4}x$

26. Factorise:

(i)
$$x^3 + 216y^3 + 8z^3 - 36xyz$$

(ii) $a^3 - 64b^3 - 27c^3 - 36abc$

27. Factorise:
$$\left(\frac{1}{2}x - 3y\right)^3 + \left(3y - \sqrt{3}z\right)^3 + \left(\sqrt{3}z - \frac{1}{2}x\right)^3$$

28. Give one example each of a binomial of degree 35, and of a monomial of degree 100.

- **29.** Find a zero of the polynomial p(x) = 2x + 1.
- **30.** Verify whether 2 and 0 are zeroes of the polynomial $x^2 2x$.
- **31.** Find the zero of the polynomial in each of the following cases: (i) p(x) = x + 5 (ii) p(x) = x - 5 (iii) p(x) = 2x + 5(iv) p(x) = 3x - 2 (v) p(x) = 3x (vi) p(x) = ax, $a \neq 0$
- 32. Find the value of each of the following polynomials at the indicated value of variables: (i) $p(x) = 5x^2 - 3x + 7$ at x = 1. (ii) $q(y) = 3y^3 - 4y + \sqrt{11}$ at y = 2.
 - (ii) $q(y) = 5y 4y + \sqrt{11}$ at y = 2. (iii) $p(t) = 4t^4 + 5t^3 - t^2 + 6$ at t = a.
- **33.** Divide p(x) by g(x), where $p(x) = x + 3x^2 1$ and g(x) = 1 + x.
- **34.** Divide the polynomial $3x^4 4x^3 3x 1$ by x 1.
- **35.** Find the remainder obtained on dividing $p(x) = x^3 + 1$ by x + 1.
- **36.** Find the remainder when $x^4 + x^3 2x^2 + x + 1$ is divided by x 1.
- **37.** Check whether the polynomial $q(t) = 4t^3 + 4t^2 t 1$ is a multiple of 2t + 1.
- **38.** Check whether p(x) is a multiple of g(x) or not, where $p(x) = x^3 x + 1$, g(x) = 2 3x.
- **39.** Check whether g(x) is a factor of p(x) or not, where $p(x) = 8x^3 6x^2 4x + 3$, $g(x) = \frac{x}{3} \frac{1}{4}$.
- **40.** Find the remainder when $x^3 ax^2 + 6x a$ is divided by x a.
- **41.** Examine whether x + 2 is a factor of $x^3 + 3x^2 + 5x + 6$ and of 2x + 4.

- **42.** Find the value of k, if x 1 is a factor of $4x^3 + 3x^2 4x + k$.
- **43.** Find the value of a, if x a is a factor of $x^3 ax^2 + 2x + a 1$.
- **44.** Factorise $6x^2 + 17x + 5$
- **45.** Factorise $y^2 5y + 6$
- **46.** Factorise $x^3 23x^2 + 142x 120$.
- **47.** Factorise : (i) $x^3 - 2x^2 - x + 2$ (ii) $x^3 - 3x^2 - 9x - 5$ (iii) $x^3 + 13x^2 + 32x + 20$ (iv) $2y^3 + y^2 - 2y - 1$
- **48.** Factorise : $4x^2 + 9y^2 + 16z^2 + 12xy 24yz 16xz$
- **49.** Expand $(4a 2b 3c)^2$.
- **50.** Factorise $4x^2 + y^2 + z^2 4xy 2yz + 4xz$.
- **51.** If x + 1 is a factor of $ax^3 + x^2 2x + 4a 9$, find the value of a.
- **52.** By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial : $x^4 + 1$; x 1
- **53.** Find the zeroes of the polynomial : $p(x) = (x-2)^2 (x+2)^2$
- **54.** Factorise :
 - (i) $x^2 + 9x + 18$ (ii) $6x^2 + 7x 3$ (iii) $2x^2 - 7x - 15$ (iv) $84 - 2r - 2r^2$
- 55. Factorise :

(i) $2x^3 - 3x^2 - 17x + 30$ (ii) $x^3 - 6x^2 + 11x - 6$ (iii) $x^3 + x^2 - 4x - 4$ (iv) $3x^3 - x^2 - 3x + 1$

- **56.** Using suitable identity, evaluate the following: (i) 103^3 (ii) 101×102 (iii) 999^2
- **57.** Factorise the following: (i) $4x^2 + 20x + 25$
 - (i) hx + 26x + 25(ii) $9y^2 - 66yz + 121z^2$ (iii) $\left(2x + \frac{1}{3}\right)^2 - \left(x - \frac{1}{2}\right)^2$
- **58.** Factorise the following : (i) $9x^2 - 12x + 3$ (ii) $9x^2 - 12x + 4$
- **59.** If a + b + c = 9 and ab + bc + ca = 26, find $a^2 + b^2 + c^2$.
- **60.** Expand the following : (i) $(4a - b + 2c)^2$ (ii) $(3a - 5b - c)^2$

(iii) $(-x + 2y - 3z)^2$

- 61. Find the value of (i) $x^3 + y^3 - 12xy + 64$, when x + y = -4(ii) $x^3 - 8y^3 - 36xy - 216$, when x = 2y + 6
- **62.** Factorise the following :
 - (i) $9x^2 + 4y^2 + 16z^2 + 12xy 16yz 24xz$ (ii) $25x^2 + 16y^2 + 4z^2 - 40xy + 16yz - 20xz$ (iii) $16x^2 + 4y^2 + 9z^2 - 16xy - 12yz + 24xz$

63. Expand the following :

(i)
$$(3a-2b)^3$$
 (ii) $\left(\frac{1}{x}+\frac{y}{3}\right)^3$ (iii) $\left(4-\frac{1}{3x}\right)^3$

64. Find the following products:

(i)
$$\left(\frac{x}{2}+2y\right)\left(\frac{x^2}{4}-xy+4y^2\right)$$
 (ii) $(x^2-1)(x^4+x^2+1)$

65. Factorise the following :

(i)
$$8p^3 + \frac{12}{5}p^2 + \frac{6}{25}p + \frac{1}{125}$$

(ii) $1 - 64a^3 - 12a + 48a^2$

66. Without finding the cubes, factorise $(x - 2y)^3 + (2y - 3z)^3 + (3z - x)^3$

- 67. Give possible expressions for the length and breadth of the rectangle whose area is given by $4a^2 + 4a 3$.
- **68.** Factorise: (i) $1 + 64x^3$ (ii) $a^3 2\sqrt{2}b^3$
- **69.** Evaluate each of the following using suitable identities: (i) $(104)^3$ (ii) $(999)^3$
- **70.** Factorise : $8x^3 + 27y^3 + 36x^2y + 54xy^2$
- **71.** Factorise : $8x^3 + y^3 + 27z^3 18xyz$

72. Verify : (i)
$$x^3 + y^3 = (x + y) (x^2 - xy + y^2)$$
 (ii) $x^3 - y^3 = (x - y) (x^2 + xy + y^2)$

- **73.** Factorise each of the following: (i) $27y^3 + 125z^3$ (ii) $64m^3 - 343n^3$
- **74.** Factorise : $27x^3 + y^3 + z^3 9xyz$
- **75.** Without actually calculating the cubes, find the value of each of the following: (i) $(-12)^3 + (7)^3 + (5)^3$ (ii) $(28)^3 + (-15)^3 + (-13)^3$

76. Find the following product : $(2x - y + 3z) (4x^2 + y^2 + 9z^2 + 2xy + 3yz - 6xz)$

77. Factorise :

(i) $a^3 - 8b^3 - 64c^3 - 24abc$ (ii) $2\sqrt{2}a^3 + 8b^3 - 27c^3 + 18\sqrt{2}abc$.

- **78.** Give possible expressions for the length and breadth of rectangles, in which its areas is given by $35y^2 + 13y 12$
- 79. Without actually calculating the cubes, find the value of :

$$(i)\left(\frac{1}{2}\right)^{3} + \left(\frac{1}{3}\right)^{3} - \left(\frac{5}{6}\right)^{3}$$
 $(ii)\left(0.2\right)^{3} - \left(0.3\right)^{3} + \left(0.1\right)^{3}$

80. By Remainder Theorem find the remainder, when p(x) is divided by g(x), where (i) $p(x) = x^3 - 2x^2 - 4x - 1$, g(x) = x + 1

(i) $p(x) = x^{2} - 2x^{2} - 4x = 1$, g(x) = x + 1(ii) $p(x) = x^{3} - 3x^{2} + 4x + 50$, g(x) = x - 3(iii) $p(x) = 4x^{3} - 12x^{2} + 14x - 3$, g(x) = 2x - 1(iv) $p(x) = x^{3} - 6x^{2} + 2x - 4$, $g(x) = 1 - \frac{3}{2}x$

- 81. Check whether p(x) is a multiple of g(x) or not : (i) $p(x) = x^3 - 5x^2 + 4x - 3$, g(x) = x - 2(ii) $p(x) = 2x^3 - 11x^2 - 4x + 5$, g(x) = 2x + 1
- **82.** Show that p 1 is a factor of $p^{10} 1$ and also of $p^{11} 1$.
- **83.** For what value of m is $x^3 2mx^2 + 16$ divisible by x + 2?
- **84.** If x + 2a is a factor of $x^5 4a^2x^3 + 2x + 2a + 3$, find *a*.
- **85.** Find the value of *m* so that 2x 1 be a factor of $8x^4 + 4x^3 16x^2 + 10x + m$.
- **86.** Show that :
 - (i) x + 3 is a factor of $69 + 11x x^2 + x^3$. (ii) 2x - 3 is a factor of $x + 2x^3 - 9x^2 + 12$.
- **87.** If x + y = 12 and xy = 27, find the value of $x^3 + y^3$.
- **88.** Without actually calculating the cubes, find the value of $48^3 30^3 18^3$.
- **89.** Without finding the cubes, factorise $(2x 5y)^3 + (5y 3z)^3 + (3z 2x)^3$.
- **90.** Without finding the cubes, factorise $(x y)^3 + (y z)^3 + (z x)^3$.